National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Antimicrobial properties of photo-polymerized 3D printed nanocomposites
Matonohová, Zuzana ; Sevriugina, Veronika (referee) ; Lepcio, Petr (advisor)
This diploma thesis deals with the preparation and characterization of nanocomposites suitable for 3D printing by masking stereolithography (MSLA) and emphasis on the antimicrobial properties of prepared nanocomposites. The theoretical part of the work is devoted to research on additive production and 3D printing, materials suitable for 3D printing using the MSLA method and nanocomposites. The experimental part of the work then deals with the preparation of individual composites containing nanoparticles (ZnO, AZO, TiO2 and carbon nanotubes) and their subsequent testing. The printability of the material was monitored by Jacobson working curves and differential scanning photocalorimetry (photo-DSC), then the structure of the composite was evaluated by Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), mechanical properties were monitored by dynamic-mechanical analysis (DMA) and tensile tests. The main point of this work were antimicrobial tests, which were performed on printed composite samples and on the nanoparticles themselves.
Advanced materials for FDM/FFF 3D print
Rygl, Michal ; Vespalec, Arnošt (referee) ; Koutecký, Tomáš (advisor)
The presented work deals with the issue of FDM / FFF 3D printing with a focus on materials with added carbon fiber. The aim of this work is to experimentally analyze the effect of carbon additive on printed parts using mechanical and thermomechanical tests. Testing of selected materials has shown that the effect of carbon additive varies according to the used base material. For example, carbon in PET-G has reduced impact strength by up to 64%. However, carbon filled CPE has demonstrated the ability to absorb impact energy up to by 28.5%. The different effect of carbon fiber was measured on the CPE material in a tensile test, where the yield strength was reduced during the stretching of the samples at room temperature, but the modulus of elasticity was increased. The absolutely positive effect of carbon was measured on all observed polymer filaments in the thermomechanical 3-point bending test, when the carbon versions of the materials achieved better results. The measured data brings an extension of the possibility of comparing the results with other types of materials suitable for 3D printing in the field of research. From a practical point of view the test results can be used for the actual choice of material when printing models has specific conditions of use. Another practical use of the analyzed data is the use of printable results of advanced materials for the creation of print profiles for other desktop 3D printers of the FDM/FFF type.
Antimicrobial properties of photo-polymerized 3D printed nanocomposites
Matonohová, Zuzana ; Sevriugina, Veronika (referee) ; Lepcio, Petr (advisor)
This diploma thesis deals with the preparation and characterization of nanocomposites suitable for 3D printing by masking stereolithography (MSLA) and emphasis on the antimicrobial properties of prepared nanocomposites. The theoretical part of the work is devoted to research on additive production and 3D printing, materials suitable for 3D printing using the MSLA method and nanocomposites. The experimental part of the work then deals with the preparation of individual composites containing nanoparticles (ZnO, AZO, TiO2 and carbon nanotubes) and their subsequent testing. The printability of the material was monitored by Jacobson working curves and differential scanning photocalorimetry (photo-DSC), then the structure of the composite was evaluated by Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), mechanical properties were monitored by dynamic-mechanical analysis (DMA) and tensile tests. The main point of this work were antimicrobial tests, which were performed on printed composite samples and on the nanoparticles themselves.
Advanced materials for FDM/FFF 3D print
Rygl, Michal ; Vespalec, Arnošt (referee) ; Koutecký, Tomáš (advisor)
The presented work deals with the issue of FDM / FFF 3D printing with a focus on materials with added carbon fiber. The aim of this work is to experimentally analyze the effect of carbon additive on printed parts using mechanical and thermomechanical tests. Testing of selected materials has shown that the effect of carbon additive varies according to the used base material. For example, carbon in PET-G has reduced impact strength by up to 64%. However, carbon filled CPE has demonstrated the ability to absorb impact energy up to by 28.5%. The different effect of carbon fiber was measured on the CPE material in a tensile test, where the yield strength was reduced during the stretching of the samples at room temperature, but the modulus of elasticity was increased. The absolutely positive effect of carbon was measured on all observed polymer filaments in the thermomechanical 3-point bending test, when the carbon versions of the materials achieved better results. The measured data brings an extension of the possibility of comparing the results with other types of materials suitable for 3D printing in the field of research. From a practical point of view the test results can be used for the actual choice of material when printing models has specific conditions of use. Another practical use of the analyzed data is the use of printable results of advanced materials for the creation of print profiles for other desktop 3D printers of the FDM/FFF type.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.